By Topic

Next-best-scan planning for autonomous 3D modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kriegel, S. ; German Aerosp. Center (DLR), Inst. of Robot. & Mechatron., Oberpfaffenhofen, Germany ; Rink, C. ; Bodenmuller, T. ; Narr, A.
more authors

We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012