By Topic

Aerodynamic evaluation of four butterfly species for the design of flapping-gliding robotic insects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kovac, M. ; Harvard Microrobotics Lab., Harvard Univ., Cambridge, MA, USA ; Vogt, D. ; Ithier, D. ; Smith, M.
more authors

Alternating gliding and active propulsion is a potentially energy saving strategy for small-scale flight. With the goal of finding optimal wing shapes for flapping-gliding robots we evaluate the quasi-steady aerodynamic performance of four butterfly species (Monarch (Danaus plexippus), the Orange Aeroplane (Pantoporia consimilis), the Glasswing (Acraea andromacha) and the Four-barred Swordtail (Protographium Ieosthenes)). We fabricate at-scale wing models based on measured wing shapes and vary the forewing angle in nine steps to account for the ability of the butterfly to change the relative orientation of its forewing and hindwing during flight. For comparison we include twelve non-biological planforms as performance benchmarks for the butterfly wing shapes. We then test these 48 wing models at 2m/s, 3.5m/s and 5m/s (Reynolds number between 2597 and 12632) in a low speed wind tunnel which allows lift and drag force measurements of centimeter-size wings. The results indicate that the forewing orientation which maximizes the wing span offers the best gliding performance and that overall the gliding ratios are highest at 3.5m/s. The wing shapes with the best gliding ratio are found in the Glasswing butterfly with a maximum of 6.26 which is very high compared to the gliding performance of similarly sized flying robots. The results from this study are important for the development of novel biologically-inspired flying micro robots as well as for biomechanics studies in biology.

Published in:

Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on

Date of Conference:

7-12 Oct. 2012