By Topic

Design under constraints of availability and energy for sensor node in wireless sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van-Trinh Hoang ; Lab-STICC/University of South-Brittany, Research Center, BP 92116, 56321 Lorient, France ; Nathalie Julien ; Pascal Berruet

Wireless Sensor Network (WSN) technology has been getting a lot of attention in recent years due to its low-cost, portability, easy deployment, self-organisation, and reconfigurability. Two main challenges faced by designers are availability and power/energy management for WSN. This paper presents a design for a wireless sensor node, which provides automated reconfiguration for both availability and energy-efficient use. This design introduces an original device named Power and Availability Manager (PAM) combined with a FPGA. The first one is considered as the intelligent part for the best use of energy and fault-tolerance, while the other enhances the availability in case of hardware failure for a node. Simulation model of these solutions together is based on General Stochastic Petri Net (GSPN). The results indicate a gain of availability from 9% to 31% for sensor node over twelve years, from 9% to 46% for sensor cluster over eighteen years, from 11% to 45% for whole network over fifty years. Our approach also results in significant energy-saving : up to 61% by using DPM policy, and up to 62.5% by using DPM and DVFS policies over seven days. These results allow us to evaluate and to show a design of WSN node for increased availability as well as energy-saving by using our approach.

Published in:

Design and Architectures for Signal and Image Processing (DASIP), 2012 Conference on

Date of Conference:

23-25 Oct. 2012