By Topic

Magnetically-excited flexural plate wave resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Martin, S.J. ; Microsensor Res. & Dev. Dept., Sandia Nat. Labs., Albuquerque, NM, USA ; Butler, M.A. ; Spates, J.J. ; Schubert, W.K.
more authors

A flexural plate wave (FPW) resonator was constructed by patterning current lines on a silicon nitride membrane suspended on a rectangular silicon frame. Eigenmodes of the rectangular membrane were excited using Lorentz forces generated between alternating surface currents and a static in-plane magnetic field. The magnetic field strength required for these devices can be achieved with small permanent magnets (≈1 cm3). Preferential coupling to a particular membrane mode was achieved by positioning current lines along longitudinal mode antinodes. An equivalent-circuit model was derived that characterizes the input impedance of a one-port device and the transmission response of a two-port device over a range of frequencies near a single membrane resonance. Experiments were performed to characterize the effects of varying magnetic field, ambient gas, gas pressure, and input power. To our knowledge, this is the first experimental demonstration of a resonant FPW device

Published in:

Frequency Control Symposium, 1997., Proceedings of the 1997 IEEE International

Date of Conference:

28-30 May 1997