By Topic

Performance Analysis and Comparison on Energy Storage Devices for Smart Building Energy Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhanbo Xu ; Moe Klinns Lab., Xi''an Jiaotong Univ., Xi''an, China ; Xiaohong Guan ; Qing-Shan Jia ; Jiang Wu
more authors

A smart building energy system usually contains multiple energy sources such as power grids, autonomous generators, renewable resources, storage devices, and schedulable loads. Storage devices such as batteries, ice/heat storage units, and water tanks play an important role in reducing energy cost in building energy systems since they can help sufficiently utilize renewable energy resources and time-of-use electricity prices. It is important to plan, schedule, and coordinate all the storage devices together with schedulable loads in a building facilitated by microgrid technology. To consider the above problem with uncertainties in solar radiation and demand profiles, a stochastic optimization problem is formulated and solved by the scenario tree method. The best combination and the optimal capacities of storage devices for specific building energy systems are then determined. Furthermore, the optimal operating strategy of building energy systems can be obtained. The performance analysis on the storage devices is conducted and the numerical results show that thermal storage devices (e.g., ice storage units, water tanks) are good for saving energy costs but batteries may not be economical due to their high investment cost and short lifetime. It is also observed that the aforementioned uncertainties have an impact on selecting which type and capacity of storage device should be used.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 4 )