By Topic

Transformation Electromagnetics Based Analysis of Waveguides With Random Rough or Periodic Grooved Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ozgun, O. ; Dept. of Electr. Eng., TED Univ., Ankara, Turkey ; Kuzuoglu, M.

A computational model is introduced which employs transformation-based media to increase the computational performance of finite methods (such as finite element or finite difference methods) for analyzing waveguides with grooves or rough surfaces. Random behavior of the roughness is taken into account by utilizing the Monte Carlo technique, which is based on a set of random rough surfaces generated from Gaussian distribution. The main objective of the proposed approach is to create a single mesh, and to analyze the effects of the parameters of grooves (such as shape and height) and of roughness (correlation length and root-mean-square height) on both transverse magnetic and transverse electric mode cutoff wavenumbers and field distributions, without repeating mesh generation at each step. This is achieved by introducing a transformation medium within the computational domain, and by computing the material parameters of the medium via the coordinate transformation technique. At each time the surface geometry is changed, only the material parameters are recomputed with respect to the new geometry. Therefore, a great reduction in CPU time is achieved. The technique is analyzed by means of various finite element simulations involving both 2-D parallel plate waveguides and 3-D waveguides of uniform cross section.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 2 )