By Topic

Incorporating Mean Template Into Finite Mixture Model for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada ; Wu, Q.M.J. ; Thanh Minh Nguyen

The well-known finite mixture model (FMM) has been regarded as a useful tool for image segmentation application. However, the pixels in FMM are considered independent of each other and the spatial relationship between neighboring pixels is not taken into account. These limitations make the FMM more sensitive to noise. In this brief, we propose a simple and effective method to make the traditional FMM more robust to noise with the help of a mean template. FMM can be considered a linear combination of prior and conditional probability from the expression of its mathematical formula. We calculate these probabilities with two mean templates: a weighted arithmetic mean template and a weighted geometric mean template. Thus, in our model, the prior probability (or conditional probability) of an image pixel is influenced by the probabilities of pixels in its immediate neighborhood to incorporate the local spatial and intensity information for eliminating the noise. Finally, our algorithm is general enough and can be extended to any other FMM-based models to achieve super performance. Experimental results demonstrate the improved robustness and effectiveness of our approach.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )