Cart (Loading....) | Create Account
Close category search window
 

Robust Auxiliary-Noise-Power Scheduling in Active Noise Control Systems With Online Secondary Path Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, S. ; Dept. of Commun. Eng. & Inf., Univ. of Electro-Commun., Chofu, Japan ; Akhtar, M.T. ; Xi Zhang

This paper deals with the auxiliary noise-based methods for active noise control (ANC) systems with online secondary path modeling (SPM). The proposed method comprises two adaptive filters: the modified Filtered-X normalized least-mean-square algorithm-based ANC filter, and the normalized least-mean-square algorithm-based SPM filter excited by auxiliary noise. The auxiliary noise injected for online SPM, degrades the noise-reduction performance of the ANC system. A two-stage gain scheduling strategy is proposed to vary power of the auxiliary noise. In the first stage the gain is varied on the basis of power of the error signal of SPM filter, and in the second stage the gain is varied on the basis of the correlation estimate of the two adjacent samples of the error signal of SPM filter. The main idea is to inject large-power auxiliary noise at the start up or when a change in the acoustic paths is detected, and to reduce the power as the system converges. The proposed method achieves a fast convergence of the SPM filter and gives a robust performance in the presence of strong perturbation in acoustic paths. Furthermore, the proposed method improves the noise-reduction performance at steady-state even in the presence of an uncorrelated disturbance at the error microphone. Moreover, the improved performance is achieved at a lower computational cost as compared with a recent method proposed in [A. Carini, and S. Malatini, “Optimal variable step-size NLMS algorithms with auxiliary noise power scheduling for feedforward active noise control,”IEEE Trans. Audio, Speech Lang. Process., vol. 16, no. 8, pp. 1383-1395, Nov. 2008]. Extensive simulations are carried out to verify the effectiveness of the proposed method.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.