By Topic

Two-Dimensional Antiguided Vertical Cavity Surface Emitting Laser Arrays With Reflecting Boundary

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Napartovich, A.P. ; Troitsk Inst. for Innovation & Fusion Res., Moscow, Russia ; Elkin, N.N. ; Vysotsky, D.V. ; Shuang Mao
more authors

Strong coupling between elements in 2-D resonant antiguided vertical cavity surface emitting laser (VCSEL) arrays results in a good ability to select the in-phase array mode. This ability can be enhanced by proper tailoring of the gain/loss spatial distributions and elimination of lateral radiation loss. To evaluate quantitatively an impact of these means on single-mode stability, numerical simulations are performed for the resonant antiguided VCSEL arrays. A bidirectional beam propagation method was implemented for solving the wave equation in a 3-D scalar diffraction approximation to describe the VCSEL array with reflecting outer boundaries. This structure is composed of distributed Bragg reflectors, active layer, and a thin absorption spacer separated from the active layer. Openings in the top metal electrode pattern the output facet. The above threshold oscillating wave field distribution was calculated. The transverse gain and index distributions were calculated in each quantum well by the 2-D carrier diffusion equation. Stability of single-mode operation against the lasing onset of higher order modes was studied numerically. A parabolic temperature profile was used to imitate thermal focusing. The maximum output power 90 mW for a 5 × 5 array and up to 350 mW for a 10 × 10 array is predicted in the single-mode regime.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:19 ,  Issue: 4 )