We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Recombination and Optical Properties of Wet Chemically Polished Thermal Oxide Passivated Si Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Schwab, C. ; Fraunhofer Inst. for Solar Energy Syst. ISE, Freiburg, Germany ; Wolf, A. ; Graf, M. ; Wöhrle, N.
more authors

Silicon solar cells typically feature textured surfaces on the front side to increase light absorption. An unwanted side effect of the texture is an increase in surface recombination compared with smoother surfaces. On the rear side of the solar cell, light absorption is not an issue; therefore, planar surfaces are used to decrease surface recombination. In processing, a planar surface can be achieved by wet chemical single-side etching of previously textured surfaces, resulting in a smoothed rear surface. This study investigates surface passivation of these chemically polished surfaces in dependence on the degree of smoothness. Surface passivation is achieved by thin thermally grown silicon oxides. Special focus is set on injection dependence and the influence of postmetallization annealing. Measured optical properties of different surfaces are compared with different optical simulation models. Finally, recombination and optical properties are connected to solar cell performance of fabricated passivated emitter and rear cells.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 2 )