By Topic

Identifying Spurious Interactions and Predicting Missing Interactions in the Protein-Protein Interaction Networks via a Generative Network Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuan Zhu ; Dept. of Math., Guangdong Univ. of Bus. Studies, Guangzhou, China ; Xiao-Fei Zhang ; Dao-Qing Dai ; Meng-Yun Wu

With the rapid development of high-throughput experiment techniques for protein-protein interaction (PPI) detection, a large amount of PPI network data are becoming available. However, the data produced by these techniques have high levels of spurious and missing interactions. This study assigns a new reliably indication for each protein pairs via the new generative network model (RIGNM) where the scale-free property of the PPI network is considered to reliably identify both spurious and missing interactions in the observed high-throughput PPI network. The experimental results show that the RIGNM is more effective and interpretable than the compared methods, which demonstrate that this approach has the potential to better describe the PPI networks and drive new discoveries.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 1 )