Cart (Loading....) | Create Account
Close category search window
 

A Proactive Fault Tolerance Approach to High Performance Computing (HPC) in the Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Egwutuoha, I.P. ; Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia ; Shiping Chen ; Levy, D. ; Selic, B.
more authors

Cloud computing offers new computing paradigms, capacity, and flexibility to high performance computing (HPC) applications with provisioning of a large number of Virtual Machines (VMs) for computation-intensive applications using the Hardware as a Service (HaaS) model. Due, however, to the large number of VMs and electronic components in HPC systems in the cloud, any fault during the execution would result in re-running the application, which will cost time, money and energy. In this paper we present a proactive Fault Tolerance (FT) approach to HPC systems in the cloud to reduce the wall clock execution time in the presence of faults. We develop a generic FT algorithm for HPC systems in the cloud. Our algorithm does not rely on a spare node prior to prediction of a failure. We analyze the dollar cost of provisioning spare nodes to assess the value of our approach. Our experimental results obtained from a real cloud execution environment show that the wall clock execution time of the computation-intensive applications in cloud can be reduced by as much as 30%. The frequency of check pointing of computation-intensive applications can be reduced to 50% with our fault tolerance approach for HPC in the cloud, compared to current FT approaches.

Published in:

Cloud and Green Computing (CGC), 2012 Second International Conference on

Date of Conference:

1-3 Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.