By Topic

Vehicle Detection Using Mixture of Deformable Parts Models: Static and Dynamic Camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leon, L.C. ; Inst. of Math. & Stat., Univ. of Sao Paulo (USP), Sao Paulo, Brazil ; Hirata, R.

Vehicle detection in video is an important problem in Computer Vision because of the potential applications in security, vehicle traffic, driving assistance and so on. In this work, we used Mixture of Deformable Part Models (MDPM) for vehicle detection in video sequences obtained from static and dynamic cameras. The MDPM method was originally proposed by Felzenszwalb et al in the realm of object detection in images. We tested this method in the realm of video sequences for vehicle detection. We designed a set of experiments that explore the number of components of the mixture and the number of parts model. We performed a comparison study of symmetric and asymmetric MDPMs for vehicle detection. Our findings show that not only the MDPM performed well in vehicle detection in video, but also the best number of components and parts model confirmed the number suggested in Felzenzwalb et al's paper. Finally, the results show some differences between the symmetric and asymmetric MDPMs in vehicle video detection considering different scenarios.

Published in:

Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on

Date of Conference:

22-25 Aug. 2012