Cart (Loading....) | Create Account
Close category search window
 

Retinal Image Quality Analysis for Automatic Diabetic Retinopathy Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pires, R. ; Inst. of Comput., Univ. of Campinas, Campinas, Brazil ; Jelinek, H.F. ; Wainer, J. ; Rocha, A.

Sufficient image quality is a necessary prerequisite for reliable automatic detection systems in several healthcare environments. Specifically for Diabetic Retinopathy (DR) detection, poor quality fund us makes more difficult the analysis of discontinuities that characterize lesions, as well as to generate evidence that can incorrectly diagnose the presence of anomalies. Several methods have been applied for classification of image quality and recently, have shown satisfactory results. However, most of the authors have focused only on the visibility of blood vessels through detection of blurring. Furthermore, these studies frequently only used fund us images from specific cameras which are not validated on datasets obtained from different retinographers. In this paper, we propose an approach to verify essential requirements of retinal image quality for DR screening: field definition and blur detection. The methods were developed and validated on two large, representative datasets collected by different cameras. The first dataset comprises 5,776 images and the second, 920 images. For field definition, the method yields a performance close to optimal with an area under the Receiver Operating Characteristic curve (ROC) of 96.0%. For blur detection, the method achieves an area under the ROC curve of 95.5%.

Published in:

Graphics, Patterns and Images (SIBGRAPI), 2012 25th SIBGRAPI Conference on

Date of Conference:

22-25 Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.