By Topic

Detection and characterization of non-transiting extra-solar planets in Kepler Data using reflected light variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Knuth, K.H. ; Dept. of Phys., Univ. at Albany (SUNY), Albany, NY, USA ; Placek, B. ; Richards, Z.

Orbiting planets reflect light, and from the perspective of a distant observer an illuminated planet undergoes phases resulting in a periodically-varying reflected light flux. While such reflected light is generally expected to be weak with the magnitude of the flux being well below noise level, in some cases reflected light variations are detectable with today's technology in the Kepler dataset. For example, a sinusoidal variation is visibly apparent along with a secondary eclipse in the HAT-P-7 light curve recorded by Kepler. In this paper we consider the problem of detecting extra-solar planets in Kepler data by modeling reflected light variations within a Bayesian estimation paradigm. We demonstrate that such detections are possible for a class of non-transiting planets using data from the Kepler Data Archive. The development of this computational technology could significantly increase the number of detectable planets within the Kepler dataset. Furthermore, understanding the potential capabilities of this technology could influence the design of future missions.

Published in:

Intelligent Data Understanding (CIDU), 2012 Conference on

Date of Conference:

24-26 Oct. 2012