By Topic

A Permanent-Magnet Exciter for Magneto-Rheological Fluid-Based Haptic Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rizzo, R. ; Dept. of Energy & Syst. Eng., Univ. of Pisa, Pisa, Italy

This paper describes an innovative haptic interface device based on magneto-rheological fluid (MRF). A system of permanent magnets and coils is designed in order to produce a proper distribution of a magnetic field inside the fluid. This distribution, with its spatial resolution, causes the MRF to assume prescribed shapes and softness profiles that can be directly felt and explored by hand. The device is designed using a 3-D finite-elements code taking into account the B-H functions of the nonlinear materials (MRF, permanent magnets, ferromagnetic materials). In order to validate the finite-element model, some experimental magnetic measurements are taken on a simplified prototype. Furthermore, the maps of the flux density and those of the shear stress inside the fluid are carefully analyzed. Finally, the interaction between the operator's hand and the MRF is numerically investigated.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 4 )