Cart (Loading....) | Create Account
Close category search window

DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongjun Liao ; Res. Unit in Networking (RUN), Univ. of Liege, Liege, Belgium ; Wei Du ; Geurts, P. ; Leduc, G.

The knowledge of end-to-end network distances is essential to many Internet applications. As active probing of all pairwise distances is infeasible in large-scale networks, a natural idea is to measure a few pairs and to predict the other ones without actually measuring them. This paper formulates the prediction problem as matrix completion where the unknown entries in a pairwise distance matrix constructed from a network are to be predicted. By assuming that the distance matrix has low-rank characteristics, the problem is solvable by low-rank approximation based on matrix factorization. The new formulation circumvents the well-known drawbacks of existing approaches based on Euclidean embedding. A new algorithm, so-called Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD), is proposed. By letting network nodes exchange messages with each other, the algorithm is fully decentralized and only requires each node to collect and to process local measurements, with neither explicit matrix constructions nor special nodes such as landmarks and central servers. In addition, we compared comprehensively matrix factorization and Euclidean embedding to demonstrate the suitability of the former on network distance prediction. We further studied the incorporation of a robust loss function and of nonnegativity constraints. Extensive experiments on various publicly available datasets of network delays show not only the scalability and the accuracy of our approach, but also its usability in real Internet applications.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

Oct. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.