By Topic

Effects of Impregnating Materials on Thermal and Electrical Stabilities of the HTS Racetrack Pancake Coils Without Turn-to-Turn Insulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hyun-Jin Shin ; Department of Material Science and Engineering, Korea University, Seoul, Korea ; Kwang Lok Kim ; Yoon Hyuck Choi ; Oh Jun Kwon
more authors

A high temperature superconducting (HTS) coil without turn-to-turn insulation is proposed for the field coil of a wind turbine. In the case of the field coil, epoxy impregnation is generally necessary to protect the coil from mechanical disturbances by time-varying magnetic fields and rotational vibrations to provide high mechanical integrity. This study examined the thermal and electrical stabilities of non-insulated GdBCO racetrack pancake coils impregnated with CTD-521, Stycast 2850 FT, and paraffin through cool down, over-current, and repetitive cooling tests. Among the three epoxy impregnated coils, the Stycast 2850 FT-impregnated coil exhibited the best thermal and electrical stabilities during over-current testing. In repetitive cooling conditions, the CTD-521-impregnated coil exhibited less degradation of its superconducting property due to the well-matching of the thermal contraction between the GdBCO racetrack pancake coil and the epoxy.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:23 ,  Issue: 3 )