By Topic

Mining Weakly Labeled Web Facial Images for Search-Based Face Annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dayong Wang ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Hoi, S.C.H. ; Ying He ; Jianke Zhu

This paper investigates a framework of search-based face annotation (SBFA) by mining weakly labeled facial images that are freely available on the World Wide Web (WWW). One challenging problem for search-based face annotation scheme is how to effectively perform annotation by exploiting the list of most similar facial images and their weak labels that are often noisy and incomplete. To tackle this problem, we propose an effective unsupervised label refinement (ULR) approach for refining the labels of web facial images using machine learning techniques. We formulate the learning problem as a convex optimization and develop effective optimization algorithms to solve the large-scale learning task efficiently. To further speed up the proposed scheme, we also propose a clustering-based approximation algorithm which can improve the scalability considerably. We have conducted an extensive set of empirical studies on a large-scale web facial image testbed, in which encouraging results showed that the proposed ULR algorithms can significantly boost the performance of the promising SBFA scheme.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 1 )