We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Autopipelining for Data Stream Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuzhe Tang ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Gedik, B.

Stream processing applications use online analytics to ingest high-rate data sources, process them on-the-fly, and generate live results in a timely manner. The data flow graph representation of these applications facilitates the specification of stream computing tasks with ease, and also lends itself to possible runtime exploitation of parallelization on multicore processors. While the data flow graphs naturally contain a rich set of parallelization opportunities, exploiting them is challenging due to the combinatorial number of possible configurations. Furthermore, the best configuration is dynamic in nature; it can differ across multiple runs of the application, and even during different phases of the same run. In this paper, we propose an autopipelining solution that can take advantage of multicore processors to improve throughput of streaming applications, in an effective and transparent way. The solution is effective in the sense that it provides good utilization of resources by dynamically finding and exploiting sources of pipeline parallelism in streaming applications. It is transparent in the sense that it does not require any hints from the application developers. As a part of our solution, we describe a light-weight runtime profiling scheme to learn resource usage of operators comprising the application, an optimization algorithm to locate best places in the data flow graph to explore additional parallelism, and an adaptive control scheme to find the right level of parallelism. We have implemented our solution in an industrial-strength stream processing system. Our experimental evaluation based on microbenchmarks, synthetic workloads, as well as real-world applications confirms that our design is effective in optimizing the throughput of stream processing applications without requiring any changes to the application code.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )