By Topic

On a new weighting matrix to enhance the accuracy of stand-alone GNSS positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jean-Philippe Montillet ; Environmental Geodesy Earth Physics, Research School of Earth Sciences, The Australian National University, Canberra, Australia ; Kegen Yu

This paper focuses on location accuracy enhancement and performance comparison for global navigation satellite systems (GNSS) based positioning in light multipath propagation environments. The well-known linear iterative least-squares (LS) estimator algorithm performs the location of a ground (mobile) terminal. A sliding window and subspace decomposition (SD) based approach is proposed to generate coefficients for weighting the pseudorange measurements between the ground receiver and a set of satellites. Simulation results with real pseudorange measurement data (recorded at two different scenarios) demonstrate that the proposed SD-based LS algorithm significantly outperforms the existing LS algorithm, with root mean square error (RMSE) reduced by more than 0.7m.

Published in:

Communications and Information Technologies (ISCIT), 2012 International Symposium on

Date of Conference:

2-5 Oct. 2012