By Topic

Design of an Inertially Counterbalanced Z -Nanopositioner for High-Speed Atomic Force Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yong, Y.K. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia ; Mohemani, S.O.R.

In many conventional atomic force microscopes (AFMs), one of the key hurdles to high-speed scanning in constant-force contact mode is the low-feedback control bandwidth of the -axis loop. This paper presents the design of a fast -nanoposi-tioner to overcome this limitation. The -nanopositioner has its first resonant mode at 60 kHz and a travel range of 5 m. It consists of a piezoelectric stack actuator and a diaphragm flexure. The flexure serves as a linear spring to preload the actuator and to prevent it from getting damaged during high-speed operations. The -nanopositioner is mounted to an XY-nanopositioner. To avoid exciting the resonance of the XY -nanopositioner, an inertial counterbalance configuration was incorporated in the design of the -nanopositioner. With this configuration, the resonances of the XY-nanopositioner were not triggered. A closed-loop vertical control bandwidth of 6.5 kHz is achieved. High-speed constant-force contact-mode images were recorded at a resolution of 200 200 pixels at 10, 100, and 200 Hz line rates without noticeable image artifacts due to insufficient control bandwidth and vibrations. Images were also recorded at 312- and 400-Hz line rates. These images do not show significant artifacts. These line rates are much higher than the closed-loop bandwidth of a conventional AFM in which this nanopositioner was tested.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:12 ,  Issue: 2 )