By Topic

Robust Sparse Analysis Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Samuel Vaiter ; CNRS and CEREMADE, Université Paris-Dauphine, Paris Cedex 16, France ; Gabriel Peyre ; Charles Dossal ; Jalal Fadili

This paper investigates the theoretical guarantees of l1-analysis regularization when solving linear inverse problems. Most of previous works in the literature have mainly focused on the sparse synthesis prior where the sparsity is measured as the l1 norm of the coefficients that synthesize the signal from a given dictionary. In contrast, the more general analysis regularization minimizes the l1 norm of the correlations between the signal and the atoms in the dictionary, where these correlations define the analysis support. The corresponding variational problem encompasses several well-known regularizations such as the discrete total variation and the fused Lasso. Our main contributions consist in deriving sufficient conditions that guarantee exact or partial analysis support recovery of the true signal in presence of noise. More precisely, we give a sufficient condition to ensure that a signal is the unique solution of the l1 -analysis regularization in the noiseless case. The same condition also guarantees exact analysis support recovery and l2-robustness of the l1-analysis minimizer vis-à-vis an enough small noise in the measurements. This condition turns to be sharp for the robustness of the sign pattern. To show partial support recovery and l2 -robustness to an arbitrary bounded noise, we introduce a stronger sufficient condition. When specialized to the l1-synthesis regularization, our results recover some corresponding recovery and robustness guarantees previously known in the literature. From this perspective, our work is a generalization of these results. We finally illustrate these theoretical findings on several examples to study the robustness of the 1-D total variation, shift-invariant Haar dictionary, and fused Lasso regularizations.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 4 )