By Topic

A Modular 1 mm ^{3} Die-Stacked Sensing Platform With Low Power I ^{2} C Inter-Die Communication and Multi-Modal Energy Harvesting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Yoonmyung Lee ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Suyoung Bang ; Inhee Lee ; Yejoong Kim
more authors

A 1.0 mm3 general-purpose sensor node platform with heterogeneous multi-layer structure is proposed. The sensor platform benefits from modularity by allowing the addition/removal of IC layers. A new low power I2C interface is introduced for energy efficient inter-layer communication with compatibility to commercial I2C protocols. A self-adapting power management unit is proposed for efficient battery voltage down conversion for wide range of battery voltages and load current. The power management unit also adapts itself by monitoring energy harvesting conditions and harvesting sources and is capable of harvesting from solar, thermal and microbial fuel cells. An optical wakeup receiver is proposed for sensor node programming and synchronization with 228 pW standby power. The system also includes two processors, timer, temperature sensor, and low-power imager. Standby power of the system is 11 nW.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 1 )