By Topic

The Exact Support Recovery of Sparse Signals With Noise via Orthogonal Matching Pursuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rui Wu ; Dept. of Math., Beijing Univ. of Aeronaut. & Astronaut., Beijing, China ; Wei Huang ; Di-Rong Chen

Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm in Compressed Sensing. In this letter, we study the performance of OMP in recovering the support of a sparse signal from a few noisy linear measurements. We consider two types of bounded noise and our analysis is in the framework of restricted isometry property (RIP). It is shown that under some conditions on RIP and the minimum magnitude of the nonzero elements of the sparse signal, OMP with proper stopping rules can recover the support of the signal exactly from the noisy observation. We also discuss the case of Gaussian noise. Our conditions on RIP improve some existing results.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 4 )