By Topic

Energy-efficient virtual machine scheduling in performance-asymmetric multi-core architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yefu Wang ; Univ. of Tennessee, Knoxville, TN, USA ; Xiaorui Wang ; Yuan Chen

Multi-core architectures with asymmetric core performance have recently shown great promise, because applications with different needs can benefit from either the high performance of a fast core or the high parallelism and power efficiency of a group of slow cores. This performance heterogeneity can be particularly beneficial to applications running in virtual machines (VMs) on virtualized servers, which often have different needs and exhibit different performance and power characteristics. Therefore, scheduling VMs on performance-asymmetric multicore architectures can have a great impact on a system's overall energy efficiency. Unfortunately, existing VM managers, such as Xen, have not taken the heterogeneity into account and thus often result in low energy efficiencies. In this paper, we propose a novel VM scheduling algorithm that exploits core performance heterogeneity to optimize the overall system energy efficiency. We first introduce a metric termed energy-efficiency factor to characterize the power and performance behaviors of the applications hosted by VMs on different cores.We then present a method to dynamically estimate the VM's energy-efficiency factors and then map the VMs to heterogeneous cores, such that the energy efficiency of the entire system is maximized. We implement the proposed algorithm in Xen and evaluate it with standard benchmarks on a real testbed. The experimental results show that our solution improves the system energy efficiency (i.e., performance per watt) by 13.5% on average and up to 55% for some benchmarks, compared to the default Xen scheduler.

Published in:

Network and service management (cnsm), 2012 8th international conference and 2012 workshop on systems virtualiztion management (svm)

Date of Conference:

22-26 Oct. 2012