Cart (Loading....) | Create Account
Close category search window
 

Room temperature continuous wave operation of λ ∼ 3–3.2 μm quantum cascade lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bandyopadhyay, N. ; Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA ; Bai, Y. ; Tsao, S. ; Nida, S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4769038 

We demonstrate quantum cascade lasers emitting at wavelengths of 3–3.2 μm in the InP-based material system. The laser core consists of GaInAs/AlInAs using strain balancing technique. In room temperature pulsed mode operation, threshold current densities of 1.66 kA/cm2 and 1.97 kA/cm2, and characteristic temperatures (T0) of 108 K and 102 K, are obtained for the devices emitting at 3.2 μm and 3 μm, respectively. Room temperature continuous wave operation is achieved at both wavelengths.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 24 )

Date of Publication:

Dec 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.