By Topic

The interaction between TCP reordering mechanisms and multi-path forwarding in wireless mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Karlsson, J. ; Dept. of Comput. Sci., Karlstad Univ., Karlstad, Sweden ; Hurtig, P. ; Brunstrom, A. ; Kassler, A.
more authors

Routing packets over multiple disjoint paths towards a destination can increase network utilization by load-balancing the traffic over the network. In wireless mesh networks, multi-radio multi-channel nodes are often used to create a larger set of interference-free paths thus increasing the chance of load-balancing. The drawback of load-balancing is that different paths might have different delay properties, causing packets to be reordered. This can reduce TCP performance significantly, as reordering is interpreted as a sign of congestion. Packet reordering can be avoided by letting the network layer forward traffic strictly on flow-level. This would avoid the negative drawbacks of packet reordering, but will also limit the ability to achieve optimal network throughput. On the other hand, there are several proposals that try to mitigate the effects of reordering at the transport layer. In this paper, we perform an in-depth evaluation of such TCP reordering mitigations in multi-radio multi-channel wireless mesh networks when using multi-path forwarding. We evaluate two TCP reordering mitigation techniques implemented in the Linux kernel. The transport layer mitigations are compared using different multi-path forwarding strategies. Our findings show that, in general, flow-level forwarding gives the best TCP performance and that transport layer reordering mitigations only marginally can improve performance.

Published in:

Wireless and Mobile Computing, Networking and Communications (WiMob), 2012 IEEE 8th International Conference on

Date of Conference:

8-10 Oct. 2012