By Topic

Surface potential decay: Effect of different corona charging times

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Zhuang ; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, United Kingdom ; G. Chen ; P. H. Chappell ; M. Rotaru

Surface potential decay measurement is a widely used tool to test the electrical properties of insulation materials. However, physical mechanism of the surface potential decay is still poorly understood. In this paper, the effect of corona charging time has been investigated. It has been found that as charging time gets longer initially the surface potential decays faster which is consistent with the existing observations. However, after the charging time reaches a certain length (changing with charging voltage), the surface potential decay becomes slower as the charging time increases. This type of behaviour has not been reported in literature. Further study on this phenomenon using the Pulsed Electro-acoustic (PEA) method which quantifies charge distribution and dynamics inside the sample validated the observation. Finally, the surface potential decay curves were analysed by fitting a double exponential decay equation and simulated by a bipolar charge transport model.

Published in:

Electrical Insulation and Dielectric Phenomena (CEIDP), 2012 Annual Report Conference on

Date of Conference:

14-17 Oct. 2012