Cart (Loading....) | Create Account
Close category search window

Investigation of temperature effect on electrical trees in XLPE cable insulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, X.R. ; State Key Lab. of Power Equip. & Electr. Insulation, Xi''an Jiaotong Univ., Xi''an, China ; Hu, L.B. ; Xu, Y. ; Cao, X.L.
more authors

In this paper, combined with the methods of real-time microscopic digital imaging and partial discharge (PD) continuous measurements, the effect of temperature on electrical tree propagation and PDs characteristics in XLPE cable insulation was investigated using an embedded needle electrode arrangement over a range of applied voltages from 9 to 15 kV rms. The temperature of the experiments varied from 10 °C up to 70 °C, which lay within the rated operating temperature range of XLPE cables. The results obtained show that temperature has dominant effect on electrical tree shapes and growth time. As the electrical tree shapes at lower voltages are influenced by the change of tree channel conductivity, this process appeared to be accelerated greatly by increase of experimental temperature. The tree growth time at higher voltages was decreased at higher temperatures due to the change of material morphology and it was accompanied by intensive PD activity.

Published in:

Electrical Insulation and Dielectric Phenomena (CEIDP), 2012 Annual Report Conference on

Date of Conference:

14-17 Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.