Cart (Loading....) | Create Account
Close category search window
 

End-to-End Secure Multi-Hop Communication with Untrusted Relays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiang He ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Yener, A.

A multi-hop line network is considered, where each node can receive signals transmitted by its two neighbors. As such, the model embodies both the interference and broadcast aspects of wireless networks. The leftmost node wishes to send messages to the rightmost node, while keeping these messages confidential from all the intermediate relay nodes. In this setting where any or all of the relay nodes can be eavesdroppers, it is shown that end-to-end secure and reliable communication is possible. Notably, it is shown that an end-to-end secrecy rate that is independent of the number of hops, i.e., intermediate eavesdroppers, is achievable by means of a carefully designed transmission schedule, compute-and-forward relaying and coding strategy utilizing nested lattice codes. The achievable rate obtained indicates that imposing secrecy constraints penalizes the capacity by at most 1 bit per channel use. Therefore, it is concluded that information theoretic secrecy can be guaranteed for this model irrespective of eavesdropping relays and a fixed modest cost for the end-to-end rate.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 1 )

Date of Publication:

January 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.