By Topic

QoS-Aware and Energy-Efficient Resource Management in OFDMA Femtocells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Long Bao Le ; Inst. Nat. de la Rech. Sci. - l'Energie, Mater. et Telecommun. (INRS-EMT), Univ. du Quebec, Montreal, QC, Canada ; Niyato, D. ; Hossain, E. ; Dong In Kim
more authors

We consider the joint resource allocation and admission control problem for Orthogonal Frequency-Division Multiple Access (OFDMA)-based femtocell networks. We assume that Macrocell User Equipments (MUEs) can establish connections with Femtocell Base Stations (FBSs) to mitigate the excessive cross-tier interference and achieve better throughput. A cross-layer design model is considered where multiband opportunistic scheduling at the Medium Access Control (MAC) layer and admission control at the network layer working at different time-scales are assumed. We assume that both MUEs and Femtocell User Equipments (FUEs) have minimum average rate constraints, which depend on their geographical locations and their application requirements. In addition, blocking probability constraints are imposed on each FUE so that the connections from MUEs only result in controllable performance degradation for FUEs. We present an optimal design for the admission control problem by using the theory of Semi-Markov Decision Process (SMDP). Moreover, we devise a novel distributed femtocell power adaptation algorithm, which converges to the Nash equilibrium of a corresponding power adaptation game. This power adaptation algorithm reduces energy consumption for femtocells while still maintaining individual cell throughput by adapting the FBS power to the traffic load in the network. Finally, numerical results are presented to demonstrate the desirable operation of the optimal admission control solution, the significant performance gain of the proposed hybrid access strategy with respect to the closed access counterpart, and the great power saving gain achieved by the proposed power adaptation algorithm.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 1 )