Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Per-Colorant-Channel Color Barcodes for Mobile Applications: An Interference Cancellation Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blasinski, H. ; Dept. of Electr. & Comput. Eng., Univ. of Rochester, Rochester, NY, USA ; Bulan, O. ; Sharma, G.

We propose a color barcode framework for mobile phone applications by exploiting the spectral diversity afforded by the cyan (C), magenta (M), and yellow (Y) print colorant channels commonly used for color printing and the complementary red (R), green (G), and blue (B) channels, respectively, used for capturing color images. Specifically, we exploit this spectral diversity to realize a three-fold increase in the data rate by encoding independent data in the C, M, and Y print colorant channels and decoding the data from the complementary R, G, and B channels captured via a mobile phone camera. To mitigate the effect of cross-channel interference among the print-colorant and capture color channels, we develop an algorithm for interference cancellation based on a physically-motivated mathematical model for the print and capture processes. To estimate the model parameters required for cross-channel interference cancellation, we propose two alternative methodologies: a pilot block approach that uses suitable selections of colors for the synchronization blocks and an expectation maximization approach that estimates the parameters from regions encoding the data itself. We evaluate the performance of the proposed framework using specific implementations of the framework for two of the most commonly used barcodes in mobile applications, QR and Aztec codes. Experimental results show that the proposed framework successfully overcomes the impact of the color interference, providing a low bit error rate and a high decoding rate for each of the colorant channels when used with a corresponding error correction scheme.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 4 )