By Topic

Stable and selective sulfur dioxide sensing elements operating at 800–900 centigrade

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David West ; Oak Ridge National Laboratory, Oak Ridge, TN ; Fred Montgomery

Sensing behavior of electrochemical transducers for the detection of sulfur dioxide (SO2) is described. These elements operate at temperatures in the range 800-900 °C, and are constructed from oxide and precious metal electrodes on oxygenion conducting substrates. The responses to SO2 at oxygen contents around 5% can be large, with 25 ppm SO2 causing a 30-40% change in the sensing signal. This SO2 response is shown to be little affected by oxides of nitrogen (NOx), carbon monoxide, and propylene, present at the 100s of ppm level. Element stability is demonstrated over about 50 days of operation at temperature.

Published in:

Future of Instrumentation International Workshop (FIIW), 2012

Date of Conference:

8-9 Oct. 2012