By Topic

Non-uniform sparsity in rapid compressive sensing MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Razzaq, F.A. ; Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia ; Mohamed, S. ; Bhatti, A. ; Nahavandi, S.

Magnetic Resonance Imaging (MRI) is one of the prominent medical imaging techniques. This process is time-consuming and can take several minutes to acquire one image. The aim of this research is to reduce the imaging process time of MRI. This issue is addressed by reducing the number of acquired measurements using theory of Compressive Sensing (CS). Compressive Sensing exploits sparsity in MR images. Randomly under sampled k-space generates incoherent noise which can be handled using a nonlinear image reconstruction method. In this paper, a new framework is presented based on the idea to exploit non-uniform nature of sparsity in MR images, where local sparsity constrains were used instead of traditional global constraint, to further reduce the sample set. Experimental results and comparison with CS using global constraint are demonstrated.

Published in:

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on

Date of Conference:

14-17 Oct. 2012