By Topic

Robust feature extraction for novelty detection based on regularized correntropy criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huan-Ru Ren ; Key Lab. of Machine Learning & Comput. Intell., Hebei Univ., Baoding, China ; Hong-Jie Xing

In this paper, a robust feature extraction method based on regularized correntropy criterion (RCC) is proposed for novelty detection. In RCC, the criterion aims to maximize the difference between the correntropy of the normal data with their mean and the correntropy of the novel data with the mean of normal data. Moreover, the optimal projection vectors in the proposed objective function can be obtained by the half-quadratic (HQ) optimization technique with an iterative manner. Experimental results on one synthetic data set and nine benchmark data sets for novelty detection demonstrate that the proposed method is superior to its related approaches.

Published in:

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on

Date of Conference:

14-17 Oct. 2012