By Topic

Self-occlusion robust 3D human pose tracking from monocular image sequence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nam-Gyu Cho ; Dept. of Brain & Cognitive Eng., Korea Univ., Seoul, South Korea ; Yuille, A. ; Seong-Whan Lee

Pose tracking technique has great potential for many applications such as marker-free human motion capture system, Human Computer Interactions (HCI), and video surveillance. Though many methods are introduced during last decades, self-occlusion - one body part is occluded by another one - is still considered one of the most difficult problems for 3D human pose tracking. In this paper, we propose a self-occlusion state estimation method. A MRF (Markov Random Field) is used to model the occlusion state which represents the pairwise depth order between two human body parts. A novel estimation method is proposed to infer a body pose and an occlusion state separately. HumanEva dataset is used for testing the proposed method. In order to evaluate and quantify how often the occlusion state changes, we label the ground truth of occlusion state.

Published in:

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on

Date of Conference:

14-17 Oct. 2012