By Topic

Map merging of Multi-Robot SLAM using Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dinnissen, P. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ; Givigi, S.N. ; Schwartz, H.M.

Using `Simultaneous Localization and Mapping' (SLAM), mobile robots can become truly autonomous in the exploration of their environment. However, once these environments becomes too large, Multi-Robot SLAM becomes a requirement. This paper will outline how a mobile robot should decide when best to merge its maps with another robot's upon rendezvous, as opposed to doing so immediately. This decision will be based on the current status of the mapping particle filters and the current status of the environment. Using Reinforcement Learning, a model can be established and then trained upon to determine a policy capable of deciding when best to merge. This will allow the robot to incur less error during a merge compared to simply merging immediately. This policy is trained and validated using simulated mobile robot datasets.

Published in:

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on

Date of Conference:

14-17 Oct. 2012