By Topic

A Linear Algebra Approach to C-Means Clustering Using GPUs and MPI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Apostolos Glenis ; Inf. Dept., Univ. of Piraeus, Piraeus, Greece ; Vu Pham

The fuzzy c-means clustering is a well-known unsupervised algorithm and has been widely used in various pattern recognition applications. As the amount of data increase, however, the basic serial implementation becomes overwhelmed. This is the main motivation for utilizing the computational power of parallel machines to speed up the c-means algorithm. We present an algorithm that exploits the mathematical equations in c-means to create building blocks based on linear algebra functions that are optimized for most available parallel architectures. We implemented our algorithm on both GPU (using CUDA and CUBLAS) and MPI (using MPI4py and NumPy), then evaluated their performance and scalability. Experiments show that our implementation outperforms all of available GPU implementations of c-means have been proposed so far.

Published in:

Informatics (PCI), 2012 16th Panhellenic Conference on

Date of Conference:

5-7 Oct. 2012