By Topic

Determining 3-D Relative Transformations for Any Combination of Range and Bearing Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xun S. Zhou ; Department of Computer Science and Engineering, University of Minnesota, Minneapolis ; Stergios I. Roumeliotis

In this paper, we address the problem of motion-induced 3-D robot-to-robot extrinsic calibration that is based on ego-motion estimates and combinations of interrobot measurements (i.e., distance and/or bearing observations from either or both of the two robots, recorded across multiple time steps). In particular, we focus on solving minimal problems, where the unknown 6-degree-of-freedom (DOF) transformation between the two robots is determined based on the minimum number of measurements necessary to find a finite set of solutions. In order to address the very large number of possible combinations of interrobot observations, we identify symmetries in the measurement sequence and use them to prove that any extrinsic robot-to-robot calibration problem can be solved based on the solutions of only 14 (base) minimal problems. Moreover, we provide algebraic (closed-form) and efficient symbolic-numerical (analytical) solution methods to these minimal problems. Finally, we evaluate the performance of our proposed solvers through extensive simulations and experiments.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 2 )