By Topic

The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Doelling, D.R. ; Climate Sci. Branch, NASA Langley Res. Center, Hampton, VA, USA ; Morstad, D. ; Scarino, B.R. ; Bhatt, R.
more authors

Deep convective clouds (DCCs) are ideal visible calibration targets because they are bright nearly isotropic solar reflectors located over the tropics and they can be easily identified using a simple infrared threshold. Because all satellites view DCCs, DCCs provide the opportunity to uniformly monitor the stability of all operational sensors, both historical and present. A collective DCC anisotropically corrected radiance calibration approach is used to construct monthly probability distribution functions (PDFs) to monitor sensor stability. The DCC calibration targets were stable to within 0.5% and 0.3 % per decade when the selection criteria were optimized based on Aqua MODerate Resolution Imaging Spectroradiometer 0.65-μm -band radiances. The Tropical Western Pacific (TWP), African, and South American regions were identified as the dominant DCC domains. For the 0.65-μm band, the PDF mode statistic is preferable, providing 0.3% regional consistency and 1% temporal uncertainty over land regions. It was found that the DCC within the TWP had the lowest radiometric response and DCC over land did not necessarily have the highest radiometric response. For wavelengths greater than 1 μm, the mean statistic is preferred, and land regions provided a regional variability of 0.7 % with a temporal uncertainty of 1.1 % where the DCC land response was higher than the response over ocean. Unlike stratus and cirrus clouds, the DCC spectra were not affected by water vapor absorption.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 3 )