By Topic

Classification of Simultaneous Movements Using Surface EMG Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Young, A.J. ; Rehabilitation Inst. of Chicago, Center for Bionic Med., Northwestern Univ., Chicago, IL, USA ; Smith, L.H. ; Rouse, E.J. ; Hargrove, L.J.

Advanced upper limb prostheses capable of actuating multiple degrees of freedom (DOFs) are now commercially available. Pattern recognition algorithms that use surface electromyography (EMG) signals show great promise as multi-DOF controllers. Unfortunately, current pattern recognition systems are limited to activate only one DOF at a time. This study introduces a novel classifier based on Bayesian theory to provide classification of simultaneous movements. This approach and two other classification strategies for simultaneous movements were evaluated using nonamputee and amputee subjects classifying up to three DOFs, where any two DOFs could be classified simultaneously. Similar results were found for nonamputee and amputee subjects. The new approach, based on a set of conditional parallel classifiers was the most promising with errors significantly less ( p <; 0.05) than a single linear discriminant analysis (LDA) classifier or a parallel approach. For three-DOF classification, the conditional parallel approach had error rates of 6.6% on discrete and 10.9% on combined motions, while the single LDA had error rates of 9.4% on discrete and 14.1% on combined motions. The low error rates demonstrated suggest than pattern recognition techniques on surface EMG can be extended to identify simultaneous movements, which could provide more life-like motions for amputees compared to exclusively classifying sequential movements.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 5 )