Cart (Loading....) | Create Account
Close category search window

Demand Response Optimization for Smart Home Scheduling Under Real-Time Pricing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsui, K.M. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China ; Chan, S.C.

Demand response (DR) is very important in the future smart grid, aiming to encourage consumers to reduce their demand during peak load hours. However, if binary decision variables are needed to specify start-up time of a particular appliance, the resulting mixed integer combinatorial problem is in general difficult to solve. In this paper, we study a versatile convex programming (CP) DR optimization framework for the automatic load management of various household appliances in a smart home. In particular, an L1 regularization technique is proposed to deal with schedule-based appliances (SAs), for which their on/off statuses are governed by binary decision variables. By relaxing these variables from integer to continuous values, the problem is reformulated as a new CP problem with an additional L1 regularization term in the objective. This allows us to transform the original mixed integer problem into a standard CP problem. Its major advantage is that the overall DR optimization problem remains to be convex and therefore the solution can be found efficiently. Moreover, a wide variety of appliances with different characteristics can be flexibly incorporated. Simulation result shows that the energy scheduling of SAs and other appliances can be determined simultaneously using the proposed CP formulation.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 4 )

Date of Publication:

Dec. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.