By Topic

Reliability-Constrained Optimal Sizing of Energy Storage System in a Microgrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaghayegh Bahramirad ; S&C Electr. Co., Chicago, IL, USA ; Wanda Reder ; Amin Khodaei

This paper presents a model for calculating the optimal size of an energy storage system (ESS) in a microgrid considering reliability criterion. A larger ESS requires higher investment costs while reduces the microgrid operating cost. The optimal ESS sizing problem is proposed which minimizes the investment cost of the ESS, as well as expected microgrid operating cost. Utilizing the ESS, generation shortage due to outage of conventional units and intermittency of renewable units is handled; hence microgrid reliability criterion is satisfied. A practical model for ESS is utilized. Mixed-integer programming (MIP) is utilized to formulate the problem. Illustrative examples show the efficiency of the proposed model.

Published in:

IEEE Transactions on Smart Grid  (Volume:3 ,  Issue: 4 )