By Topic

Sub-Pixel Mapping Based on a MAP Model With Multiple Shifted Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiong Xu ; State Key Lab. of Inf. Eng. in Surveying, Mapping & Remote Sensing, Wuhan Univ., Wuhan, China ; Yanfei Zhong ; Liangpei Zhang ; Hongyan Zhang

Sub-pixel mapping is technique used to obtain the spatial distribution of different classes at the sub-pixel scale by transforming fraction images to a classification map with a higher resolution. Traditional sub-pixel mapping algorithms only utilize a low-resolution image, the information of which is not enough to obtain a high-resolution land-cover map. The accuracy of sub-pixel mapping can be improved by incorporating auxiliary datasets, such as multiple shifted images in the same area, to provide more sub-pixel land-cover information. In this paper, a sub-pixel mapping framework based on a maximum a posteriori (MAP) model is proposed to utilize the complementary information of multiple shifted images. In the proposed framework, the sub-pixel mapping problem is transformed to a regularization problem, and the MAP model is used to regularize the sub-pixel mapping problem to be well-posed by adding some prior information, such as a Laplacian model. The proposed algorithm was compared with a traditional sub-pixel mapping algorithm based on a single image, and another multiple shifted images based sub-pixel mapping method, using both synthetic and real hyperspectral images. Experimental results demonstrated that the proposed approach outperforms the traditional sub-pixel mapping algorithms, and hence provides an effective option to improve the accuracy of sub-pixel mapping for hyperspectral imagery.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 2 )