By Topic

Frenet-Serret and the Estimation of Curvature and Torsion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kwang-Rae Kim ; Inst. for Math. Stochastics, Georg-August-Univ. of Goettingen, Goettingen, Germany ; Kim, P.T. ; Ja-Yong Koo ; Pierrynowski, M.R.

In this paper we approach the problem of analyzing space-time curves. In terms of classical geometry, the characterization of space-curves can be summarized in terms of a differential equation involving functional parameters curvature and torsion whose origins are from the Frenet-Serret framework. In particular, curvature measures the rate of change of the angle which nearby tangents make with the tangent at some point. In the situation of a straight line, curvature is zero. Torsion measures the twisting of a curve, and the vanishing of torsion describes a curve whose three dimensional range is restricted to a two-dimensional plane. By using splines, we provide consistent estimators of curves and in turn, this provides consistent estimators of curvature and torsion. We illustrate the usefulness of this approach on a biomechanics application.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:7 ,  Issue: 4 )