Cart (Loading....) | Create Account
Close category search window
 

Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schmidt, Susann ; Thin Film Physics Div., Department of Physics (IFM), Linköping University, SE-581 83, Sweden ; Czigany, Zsolt ; Greczynski, Grzegorz ; Jensen, Jens
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4769725 

The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CNx) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inert gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N2 was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CNx thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CNx films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CNx thin films.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:31 ,  Issue: 1 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.