Cart (Loading....) | Create Account
Close category search window
 

3D simulation of electric and thermal field due to short electrical pulses in hemorrhage control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Adawi, E. ; Dept. of Biomed., Tel-Aviv Univ., Tel-Aviv, Israel ; Mandel, Y. ; Barnea, O.

Uncontrolled hemorrhage causing hypovolemic shock is a leading cause of preventable death. Truncal hemorrhage originating from solid organs is considered as non-compressible. Controlling such hemorrhage may be challenging in the pre-hospital setting. The treatment should avoid thermal damages caused by heating and high electric field. Therefore, non-thermal based technology causing hemorrhage control is still needed. This study investigates the thermal effects of short high-voltage electric pulses for hemorrhage control. Three dimensional models were developed to compute the electrical and thermal fields in tissue. Computer simulation was used to determine the appropriate electrode configuration and the treatment protocol. We determined the minimal, maximal and mean electrical field in different depths of the target tissue for the given electrode configurations. Desirable field distributions can be obtained by changing the geometric and pulse parameters. By choosing the appropriate treatment protocol, suitable electrode configuration and adequte pulse amplitude, the proposed method can be applied without thermal damage while minimizing electrical damage.

Published in:

Electrical & Electronics Engineers in Israel (IEEEI), 2012 IEEE 27th Convention of

Date of Conference:

14-17 Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.