By Topic

An equivalent model for single and three phase power rectifiers with active loads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raul Rabinovici ; Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel ; Moshe Avital ; Kfir J. Dagan

We show that in active load rectifier case, superposition method can be used to construct a simpler model. Although such a rectifier is highly non-linear, the superposition method can be operated when dividing the cycle period into diode conduction and non-conduction intervals. The superposition operation over the active load rectifier provides two equivalent circuits: a circuit that contains only the power source and a circuit that contains only the active load (an AC current source as a common model of an active load). Since the former contains a passive load rectifier, we are left with the problem of analyzing a single-phase active load. Because an equivalent model for the single-phase active load contains only a current source in parallel to a resistor, the analysis complexity of the whole system is greatly reduced. In addition, we show that every rectifier model can be defined either as a Norton form, in which the load consists of a current source connected in parallel to the resistance-capacitance load, or as Thevenin form, in which the load consists of a voltage source connected in series to the resistance-capacitance load. Theoretical results are validated through simulations, which show a very high correlation when comparing the ordinary model parameters (such as input current THD) with the equivalent one. These findings can give us a simpler model for an active load rectifier investigation and an easier mathematical analyzing.

Published in:

Electrical & Electronics Engineers in Israel (IEEEI), 2012 IEEE 27th Convention of

Date of Conference:

14-17 Nov. 2012