By Topic

An Optimization Framework for QoS-Enabled Adaptive Video Streaming Over OpenFlow Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hilmi E. Egilmez ; Coll. of Eng., Koc Univ., Istanbul, Turkey ; Seyhan Civanlar ; A. Murat Tekalp

OpenFlow is a programmable network protocol and associated hardware designed to effectively manage and direct traffic by decoupling control and forwarding layers of routing. This paper presents an analytical framework for optimization of forwarding decisions at the control layer to enable dynamic Quality of Service (QoS) over OpenFlow networks and discusses application of this framework to QoS-enabled streaming of scalable encoded videos with two QoS levels. We pose and solve optimization of dynamic QoS routing as a constrained shortest path problem, where we treat the base layer of scalable encoded video as a level-1 QoS flow, while the enhancement layers can be treated as level-2 QoS or best-effort flows. We provide experimental results which show that the proposed dynamic QoS framework achieves significant improvement in overall quality of streaming of scalable encoded videos under various coding configurations and network congestion scenarios.

Published in:

IEEE Transactions on Multimedia  (Volume:15 ,  Issue: 3 )